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A simplified model of plane isothermal steady ice flow in the land-based part, the shelf and the ice-sheet-ice-shelf transition 
zone of a glacier which interacts with the sea is constructed using Glen’s flow law and perturbation methods. Boundary conditions 
on the joining line are obtained for the land-based part of the glacier. The dynamics of the ice-divide domain of the glacier is 
analysed for the case of axially symmetric, steady, isothermal ice flow. 0 2001 Elsevier Science Ltd. All rights reserved. 

Laboratory investigations [l] have shown that the motion of ice can be described using a model of the 
flow of an incompressible fluid with an exponential rheological law and a creep coefficient close to three 
(Glen’s law). In the case of glaciers, the Reynolds number is of the order of 10-l’ and the Stokes 
approximation, which describes inertialess flow, is therefore used. It has been shown [2] that, in the 
case of many glaciers, the effect of temperature can be taken into account by the choice of its 
characteristic value in the layer close to the base. On account of this, we will henceforth confine ourselves 
to considering two-dimensional isothermal flow. We shall also assume that there is no ablation and 
slippage of ice on the bed [3] (which is assumed to be solid). The viscosity of water is neglected compared 
with the viscosity of ice (in the floating ice region) and the high-frequency components of the function 
for the bed profile are also neglected (the characteristic slopes of the bed and the upper surface of the 
land-based glacier are assumed to be equal). 

When investigating marine glaciers (Fig. l), four parts are distinguished the land-based glacier, the 
shelf glacier (hereinafter, simply called the shelf, that is, the floating part of the glacier), the glacier - 
shelf transition zone and the ice-divide domain (the ice divide means the centre of the ice spreading). 
The majority of gaps are bored in the last zone since the horizontal velocities are minimal in it, which 
facilitates the dating of an extracted core sample. When modelling plane flow it is frequently assumed 
that the glacier is symmetrical about a stationary plane of symmetry which, in the present case, also 
determines the ice divide. In the case of axisymmetric flow, the ice divide coincides with the axis of 
symmetry. 

Steady flow of a land-based glacier is possible when there is a zero mass balance across its upper 
surface and the drain into the ice shelf. A steady-state condition of the ice shelf is ensured by zero balance 
in the inflow of ice from the land-based glacier across the surface and outflow as a consequence of the 
icebergs chipping off. 

The land-based part of a glacier and the ice shelf are characterized by a low ratio of their characteristic 
thicknesses to their lengths (for example, the length, the thickness and the characteristic time of change 
of the land-based parts of Antarctic glaciers are estimated to be lo3 km, 3 km and lo4 years respectively). 
This enables one to simplify the problem using the thin-layer approximation and to obtain models 
describing the shear flow in the land-based part of a glacier [4] (when no-slip conditions are set up on 
the bed) and the expansion flow in the ice shelf [5]. However, to solve these problems, a knowledge is 
required of the conditions of the matching of the ice thickness along the joining line (where the ice 
begins to rise to the surface), which are boundary conditions on the ice thickness function in the case 
of problems of land-based ice and an ice shelf. In order to determine these conditions, it is necessary 
to investigate the glacier-ice-shelf transition zone in which the thin-layer approximation is unsuitable 
and where the shear and normal stresses are of the same order of magnitude, since a transition occurs 
from shear flow in the land-based part of the glacier to expansion flow in the ice shelf. 

As a rule, the condition of hydrostatic equilibrium of the ice and a mass balance condition, which 
are simplified in the thin-layer approximation, are set up on the joining line. Generally speaking, these 
condition are unfounded. These relations have been modified in [7] by using an unknown parameter 
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which characterizes the deviation of the normal deviator stresses, obtained in the thin-layer 
approximation, from their true value. However, the algorithm for finding the value of this parameter 
has not been defined. At the same time, as numerical experiments in [8] showed, the position of the 
joining line is sensitive to a change in the parameters occurring in the boundary condition on it. The 
problem therefore arises of finding the unknown fields in the transition zone and of obtaining rigorously 
substantiated boundary conditions on the joining line. An analysis of this problem for ice of a constant 
viscosity has been carried out in [9] but, since the viscosity of ice is non-linear, the applicability of these 
results is limited and it is necessary to consider the general case of a power-function rheology. 

A mathematical model of a land-based glacier, obtained in the thin-layer approximation, has been 
found, neglecting the normal deviator stresses. In this case, for a power-function rheological law, the 
viscosity is proportional to the negative power of the shear stress. This model is therefore unsuitable 
in the ice-divide domain, since, in the plane (or axis) of symmetry of the glacier, the shear stresses are 
equal to zero, and this leads to an infinite viscosity. This characteristic determines the infinite curvature 
of the upper surface at the ice divide [lo]. It has been shown in [ll] that, in the case of plane ice flow 
in the ice domain, the shear and normal stresses are of the same order of magnitude, and it is therefore 
necessary to solve the complete Stokes system. A simplified model of the dynamics of the ice-divide 
domain in the case of plane ice flow has been constructed [12] using perturbation methods. However, 
many ice domes are almost axisymmetric in shape and a mathematical analysis of the corresponding 
problem is necessary. Earlier, this problem had only been solved numerically in 1131 where steady flow 
was considered. 

The foregoing discussion determines the aim of this paper, that is, to construct a well-founded 
simplified mathematical model, first, of an ice sheet interacting with an ocean when there is a plane, 
steady flow of ice (Section 2) which takes account of the features of its basic zones: the land-based 
glacier, the ice shelf and the glacier-shelf transition zone and, second, of the ice-divide of the land- 
based glacier in the case of axisymmetric, steady ice flow (Section 3). 

1. BASIC EQUATIONS 

Consider a plane or axisymmetric flow of a glacier which is running into an ocean (Fig. 1). We place 
the origin of a Cartesian cylindrical system of coordinates at the bed level on the ice-divide. The z axis 
is directed upwards and belongs to the plane of symmetry in the case of plane flow or coincides with 
the axis of symmetry in the case of axisymmetric flow and the x axis is directed horizontally along the 
flow. The domain 0 < x < xr, where xr is the position of the joining line, will determine the land-based 
part of the glacier and the domain xe c x < x,, where x, is the line of cleavage of the ice shelf, will 
determine the floating part. 

Notation: 8 is the time, $9, x) is the profile of the glacier upper surface, b(9, x) is the profile of the 
glacier lower surface, which coincides with the domain x c xg with a rise of the fixed, rigid bed, p is the 
pressure, u is the horizontal velocity of the particles along the x axis, w is the vertical velocity of the 
particles, tl, r2, z3, z4 are the shear stress and the normal deviator stresses along the x axis, the z axis 
and (in the case of axisymmetric flow) the cp axis respectively, n’ is the coefficient of the effective viscosity, 
n is the rheological constant in the rheological law [I] 
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where eCz) is the second invariant of the deformation note tensor, a 3 1 is the creep coefficient,f,, (-fb) 
are the rates of accumulation of ice at the upper and lower surfaces, respectively (it is assumed that 
there is no ablation in the bed: fb = 0, x c xg), g is the acceleration due to gravity, pi and p,,, are the 
densities of ice and water, 1 is the sea level, k = pi/p,, 6 = 1 -k is the normalized difference between 
the densities of water and ice, E is the characteristic slope of the glacier surface, and n = 0 in the case 
of a plane flow and IE = 1 in the case of axisymmetric flow. Henceforth, in the various expressions, tip 
I;: and ei, Ei, apart from multipliers, have the physical meaning of stresses and deformation rates, and 
the subscripts, which correspond to independent variables, denote partial derivatives. 

Unsteady ice flow in the selected system of coordinates, when account is taken of the incompressibility 
of the ice, is described by the Stokes equations 

-(X”P), + CXnri )* + (XnZs)z = X”pig (1.1) 

r2+t3+nr4 =0, (‘5,,T2,ZJ,q)=p* u,+w,24,34~2 ( X 1 
p* =$/a 2u,2+2w;+(uZ+w,)2+2 , O<x<x,, b<t<s 

where the expression for the effective viscosity follows from the definition of the rheological law 
presented above. 

The boundary conditions depend on the process being considered. The stresses on the upper 
surface are equal to zero and the law of conservation of mass holds. A no-slip condition is used on the 
bed [3]. On the lower surface of the ice, in the domain where it floats, the shear stress is equal to zero 
(when the viscosity of water is neglected), the normal stress is the hydrostatic pressure of the water 
and the law of conservation of mass holds. At the ice divide, the flow is assumed to be symmetric 
and the horizontal velocity is equal to zero. Along the line of cleavage of the ice shelf, the position of 
which is assumed given, as will be obvious in the solution, it is sufficient to determine the magnitude 
of the normal force [14], the value of which in water is known. Hence, the boundary conditions have 
the form 

z=s: sx(-p+r*)=r,, s,r, =-p+73, s, + us, =w+fs 

z=b, x>xg: b,(p-z,)=b,(f-b)p,g-2,, b,T,+ P- 73 =U-b&g 

(1.2) 

b,+ub, =w+fb (1.3) 

z = b, x<xg: u=w=o; x = 0: u=w*=o (1.4) 

x=xc: 6~-p+r,)dr=-fp,g(l-b)2 (1.5) 

Far from the ocean, the ice flow is described in the thin-layer approximation where shear stresses 
play a leading role and the ratio of the characteristic thickness of the ice to the length of the land-based 
glacier .s is small. 

Henceforth, we shall omit the initial conditions for the ice surface. 
In order to reduce relations (l.l)-(1 S) to dimensionless form, we use the scales found using similarity 

theory [4] (these scales are denoted below by square brackets) 

[PI=PiglZI~ IwI=lf,I=lfbI~ lUI=1XIIf~I[ZI-‘~ I~l=[zl=Ibl=[~l=E[~l 

E = ([f,lrl(p,g>-a[xl-a-‘)“~2a+2’, ip’l= ~“a~~~l~f,1~zl-2~“a-‘, @I = [zllfsl-’ (1.6) 
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The length scale of the glacier [x] and the rate of ice accumulation on the surface [f,J are determined 
from observations. Physically, this relation between &,fs and the remaining parameters ensures equality 
of the scales of the specific force caused by the vertical change in the shear stress and the pressure drop 
in the horizontal direction. 

We will consider the case when the amplitude of the high-frequency components of the bed profile 
functions is small compared with the ice thickness and we shall therefore neglect them and actually 
assume that b, = O(E), x c xK We will also assume that, at the point x = 0, the bed profile is described 
by a smooth curve, and, therefore, as a consequence of symmetry, b,(O) = 0. 

2. CONSTRUCTION OF A MODEL OF A MARINE GLACIER 
FOR PLANE STEADY ICE FLOW 

We will assume that steady flow of the glacier exists and change to dimensionless coordinates, which 
are denoted by capital letters. Since the main problem of this section is associated with the modelling 
of the transition zone, for convenience in writing the formulae, we will change to a system of coordinates 
at a point of the bed on the joining line which, in this case, will be defined as X = 0. It is natural that, 
here, the ice divide position is given by the expression X = -X,. 

Whenn = 0, system (l.l)-(1.5) can be reduced to the problem of determining the stream function 
Y(V = Yz, W = -‘yx) and the unknown upper surface of the ice S and the lower surface of the ice 
shelf (X > 0) B: 

T,, + 2a2T,, - ~‘r,, = 0, -X,<XcX,, BcZ<S (2.1) 

Z=S: E,(I-&2S;)=2~2SxE2, (2.2) 
--X8 

Z=B, X<O: Y=Yz=O (2.3) 

Z=B. X>O: E,(I-E~B;)=~&*B~E~, Y&&X (2.4) 
0 

x=-x,: Yz=Yxx=O (2.5) 

where 

V,.T,)=NE,.E,). E, =Yzz-~*Yxx, 4 = 2’3”,, p = [&; + E; 1(+(2a) 

The equations of the ice surfaces have the form 

H2 -+ B)* = 2E2C, B-S+kH=k&*T, whenX>O, B(+O)=O (2.6) 

H2-~L2=2~2~+2jl(HBx+[ISx+(I+~2B:)~Ya]Z,B)dXwhenX<~ 
X 

where, for brevity, the following notation has been used for the integral forces 

(2.7) 

G = j[2T2 + J,]dZ, I = -&2[T* + J,], J=;qdZ. T=J&, H=S-B (2.8) 
B 2 

Equations (2.1)-(2.5) are obtained from problem (l.l)-(1.5) by eliminating the functionp. The first 
equality of (2.6) and equality (2.7) are the result of successive integration of the first equation of (1.1) 
with respect to z from b to s and, also, with respect to x from x to x, and from x to xr: respectively. The 
second relation of (2.6) is obtained from the second equation of (1.1) by integrating with respect to 
z from h to s. 

After reduction to dimensionless variables, the resulting equations take the form (2.1)-(2.7). 
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From the physical point of view, the first equality of (2.6) and equality (2.7) are the equations for 
the balance of the forces for the volumes of ice defined by the domains (X, XC) and (X, 0), and the 
second equation of (2.6) is for the cross-section X = const. Analogous equations for determining the 
ice surfaces will subsequently be obtained from (2.6) and (2.7) by a transformation of the coordinates 
and they therefore have the same physical meaning. 

The use of equations in integral form for determining the ice surface is due to the fact that stresses 
can be generated in them (this is clear, for example, from relations (2.9), which are presented below) 
which makes the analysis difficult. 

All terrestrial glaciers are characterized by a characteristic slope of the glacier surface E = 10-2-10-3. 
This parameter reflects the conditions of their existence. 

Model of a land-based glacier. We will seek outer expansions q, S of the stream function Y and the 
height of the surface S in the domain of a land-based glacier in the form 

F=Fo+o(&*), s=s,+o(E*) 

From relations (2.1)-(2.8) we .then find 

in a similar manner to that described earlier in (41. Here, Q is the horizontal mass flow. 
Equation (2.9) for the upper surface does not include the stream function and serves to determine 

the profile of the ice surface far from the joining line. This problem can be solved numerically, since 
it is difficult to solve analytically when the bed has an arbitrary profile. When the bed is flat and horizontal, 
and the rate of accumulation is constant, the analytical solution of this problem is well-known [15]. Since 
(2.9) is a first-order equation, in order to obtain a unique solution it is necessary to find the height 
of the surface of the outer expansion along the joining line So(O) and the quantity X,, which is also 
unknown. These parameters must be determined by matching the profiles of the upper surfaces for the 
different glacial zones. 

The outer expansion which has been constructed is characterized by an infinite curvature of the upper 
surface at the point X = -X, close to which it is unsuitable [lo, 111. This singularity can be taken 
into account by constructing an inner expansion in the ice-divide domain [12]. 

Model of the ice flow in the shelf. In order to use the theory of perturbation methods to model the 
ice flow in the shelf, it is necessary to change to a system of coordinates normalized to scales which are 
characteristic of the given flow domain. The characteristic length of the shelf and of the land-based 
glacier are taken to be equal. We now introduce the unknown scale for the shelf thickness [z,] and the 
quantity $ = [zJ/[z] d 1, and change to the variables 

vw)=(x,Y), iL;, V=(Z.S,B.L), E, ALE 
[Xl 

In these new variables, the equation and the boundary condition for the stream function_ look 
similar to (2.1)-(2.5) if, in these equations, the symbols (X, Z, E) are replaced by (X, Z, E,), 
respectively. 

The equations of the ice surfaces (2.6) give 

(2.10) 

Equating the factor in front of the bracket to unity, the characteristic thickness of the shelf can be found. 
In the case of an arbitrary length scale for the shelf [xJ G [xl, the formula is obtained in a similar manner 
and has the form 
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it, I= (t12 2”+‘(p;g~)-a[x][fg][x,]-‘)‘~a+‘) (2.11) 

Expanding the required functions in asymptotic series in powers of &i and taking account of the 
fact that Yc = O($), which follows from Eq. (2.1), we find the leading terms of the outer expansion 

_ _ 

4Jo =QZ-L+kQ+jF&, 
6 

So=i+sio, bo=i-kfio (2.12) 
0 

A + (a + I)jQadX 

- 1 

-II(a+l) 

F = F, - Fb, A = const 
0 -& 

The resulting analytical solution, which describes expansion flow (the predominance of normal stresses 
over shear stresses) is identical with that found previously (see [5] and the references in it). However, 
the relation between the length and thickness scales of the shelf (2.11) has been obtained for the first 
time. This solution describes a “slab” flow, which is characterized by the fact that there is no change 
in the horizontal velocity with respect to the vertical velocity. The parameter A is determined from 
matching the expansions for the different zones and determines the ice thickness of the outer expansion 
along the joining line. Obviously, the occurrence of an inflow of ice from a land-based glacier corresponds 
to the finite thickness of the ice along the joining line, and, if 0 <A < M, steady flow of the shelf glacier 
occurs. 

It is impossible to match the outer expansions for the stream function in the domains of a land-based 
glacier and the shelf without introducing a boundary layer in the neighbourhood of the point X = 0 
and constructing an inner expansion which will also determine the transition zone. 

Model of the transition zone. Let us find the spatial scales of the transition zone. Taking account 
of the no-slip conditions on the bed, it is natural to select the scale for the ice thickness as the 
vertical scale. We will now determine the horizontal scale. Note that normal stresses predominate 
in the shelf domain while shear stresses predominate in the land-based part of the glacier. Hence, in 
the transition zone, where a change in the flow conditions occurs, the normal and shear stresses are of 
the same order of magnitude. In the land-based part of the glacier, only two terms are decisive in the 
first equation of (1.1): the pressure gradient and the specific force due to shear deformations. In the 
shelf, all of the forces (the terms in the first equation of (1.1)) are equivalent. Hence, in this equation, 
which refers to the transition zone, all the terms must be of the same order of magnitude, which is only 
possible if the horizontal and vertical scales are identical. The horizontal spatial scale of the transition 
zone is therefore equal to the scale for the ice thickness along the joining line and, in particular, the 
ratio between them is independent of E and 6. Moreover, since, in the transition zone, the stress scales, 
as well as the spatial scales, are the same, it is impossible to match the surfaces of the ice and obtain 
the boundary conditions on the joining line solely from the balance equations. This can be shown by 
integrating the equations of motion over the domain of the transition zone (see relation (2.15) below, 
which cannot be simplified to a form which does not contain the value of the stream function in the 
transition zone). 

We will denote the ice thickness along the joining line by A = H(0) and introduce the inner expansion 
variables 

where Q. is the (unknown) mass flow along the joining line and we rewrite relations (2.1)-(2.8) in the 
new variables 

t,, + 2t,,, - $55 = 0, --m<<<, fl<Y<X 

y = x: qU-x~)=2xp2, v=l+O(&); y=6, 5<0: w=wy=o 

y=6, {>O: e,(l-6:) = 2fiSe2, V = O(a) 

(2.13) 

where 
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9 =wyy-wsc~ e2 =2wbl (4~f2)=W,9e2)v CL=(ef+e2) 
2 (I-a)/(Za) 

The equations for the height of the surfaces (balancing of the forces) have the form 

f3h2 + 2kht, - ki+-‘t; =21;, 19-y+kh=k6j3-‘rg when c>O (2.14) 

&=w- ~+hwyy),=& 1 9 6 = O(E) when 5 c 0 
5 

p = &-1A1+2’aQj1/a, fj(+o) = 0 

(2.15) 

(2.16) 

where the following notation for the integral forces has been used 

i = jr,dy, t = i lYzd 
Y 

In these variables, the slope of the bed in the transition zone and the inflow of mass across the surface 
as a consequence of the accumulation of sediment are estimated as O(E), and the slope of the upper 
surface as O(F), which follows from the second equation of (2.14), where for glaciers, 6 = 0.1. 

In this formulation, where the equations for the stream function and the profile of the upper surface 
of the ice hold in every domain of the ice flow, the smoothness of the above-mentioned functions is 
assumed. The matching condition for the lower surface along the joining line (the second equation of 
(2.16)) will therefore be the equation for determining the magnitude of the parameter 0. The values 
of the parameter p and the sea level y in the inner coordinates determine X, and H(0). 

As a consequence of changing to dimensionless quantities in the transition zone, we have 

h = O(l), E -3 0. 6-O 

Asymptotic analysis of the first equation of (2.14) shows that p = O(1) when E + 0 or else a sequence 
Lo, n -+ 00 exists such that fc + 0 or ‘4 + 03 when n + m. This contradicts the conclusion concerning 
the equality of the spatial scales of the transition zone and is equivalent to the requirement that the 
derivatives in the inner variables should be of the same order of magnitude when E,, + 0. 

A similar analysis shows that 

/3=O(S”), 6+0, OCmCl 

Suppose m > 0. Then, after expanding the functions of problem (2.13)-(2.16) in powers of 6, we obtain 
that the leading terms of the expansion are found neglecting the effect of the hydrostatic force (the 
first term in the first equation of (2.14)), while this force determines the dynamics of the shelf. This 
points to the fact that, when m > 0, it is impossible to match the outer expansion for the shelf and the 
inner expansion for the transition zone. Finally, we have 

P=O(l,, E-+0, 6-O 

Putting 0 = 1 in the first equation of (2.6), we find the characteristic scale for the ice thickness along 
the joining line 

lz,l= ~rllfSlI~l(P,g~)-a~“(a+2) 

Equating [zl] = [zs] in (2.11) the characteristic magnitude of the slope of the surface of the shelf close 
to the joining line E, = 2-2a-1 can be found. This quantity is small when o! 2 2. 

We will seek a solution of system (2.13)-(2.16) in the form of asymptotic expansions in powers of 
E and F 

v = (\v, 19, h,P) = v. + O(E) + O(6). d=(~~)=d~+6d,+O(~)+0(6~), k=I-6 

For the terms of the inner expansion, we have 
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where 

t,,+2t,&-f,55 =o, -=<5<+00, I-b<y<l 

y=l: woyy =o, wo=l, y=o, 5<0: wo=woy=O 

y= I-/+), c>o: e, (I - h& ) = -2hoge,, w. = 0; PO = &-1A1+2/og11a 

e, = woyy - wot5, e2 = 2wogy. (t,, t2 ) = WI. e2 ), P = (e: + ez )+a)‘(2a) 

The equation for the ice thickness has the form 

(2.17) 

is,h,’ + hots = i <dy when 5 > 0; b(O) = 1 (2.18) 
I-ho 

The terms of the expansion for the lower surface (6) and the upper surface (x) of the glacier and 
the sea level y are given by the explicit formulae 

6,=Owhen~cO; 6, =1-h, when 5~0; yo=l, y, =-l-&‘t&_o 

x0 =1,q XI =&)-I+&&-t, +J I 
) when k>O (2.19) 

when 5~0 

where 

j=i t,dy, t=jly=,_ho’ c=2t2+j5 
Y 

Equation (2.17) for the stream function is defined in an infinite strip with a plane horizontal upper 
boundary and an unknown lower boundary when 5 > 0. When 5 < 0, that is, in the domain of the land- 
based glacier, the lower boundary is also a horizontal straight line. The first terms of the expansion for 
the height of the upper surface and the sea level are found using formulae (2.19). 

The solution of problem (2.17)-(2.19) can be obtained by numerical methods since an analytical 
solution is difficult. It is remarkable that, in these variables, the determination of the functions w, h 
and r9 with an accuracy O(6) enables one to find y and x with an accuracy of O(6”). The parameters 
determining the effect of the dynamics of the land-based part of the glacier and the shelf do not occur 
in the system of equations obtained and, therefore, the magnitude of fi depends solely on the rheology 
of the ice. 

Uniformly valid expansion. We will now describe an algorithm for constructing a uniformly valid solution 
for the profiles of the ice surfaces. Suppose problem (2.17)-(2.19) has been solved and the inner 
expansion of the functions w, 6, y, x, p has been determined in the transition zone. A knowledge of 
p and y enables one to determine the position of the joining line X, from the first relation of (2.16) 
that determines the parameters PO 

EQ;‘~P~ = 6[(L - B)/(yo + 6y,)]‘+2’Q (2.20) 

which is written in the variables of the land-based glacier, where Q,,(X), L, B(X) are known 
functions. 

If solution (2.20) does not exist, then a steady ice flow also does not exists under the given conditions. 
After the position of the joining line has been determined, the ice thickness along it is found 

A = (L - B)(yo + 6y, )-’ 

On taking account of the fact that 
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ylo =iji+oo(y*,. c-+--3 v = [(a + 2)y - 1 + (1 - y)a+2](a + l)-’ 

and matching the inner and outer expansions of the profile of the upper surface of the ice in the land- 
based part of the glacier, we obtain the uniformly valid expansion (in inner variables) 

x=$,lA+l+Gx, -x* when 5~0; x* =I+6[h-(a+2)“af30’5] 

The quantity x1 is determined using formulae (2.19), and so is the solution of Eq. (2.9) with the boundary 
condition on the joining line 

In order to match the expansions which have been constructed in the floating ice domain, it is necessary 
to expand the functions of the outer expansion for the shelf in asymptotic series in 6, as was done in 
the case of the transition zone. An outer expansion of the inner expansion for the ice thickness can be 
obtained from formula (2.12), neglecting the accumulation of ice on the surface. Finally, for the ice 
thickness and the height of the ice surfaces, we obtain the uniformly valid expansions (in inner variables) 

where 

h=~oA,lA+h,-h’. ~=~~A,lA+l+Iix, -x*, 6=x-h when {>O 

h’ = @*a+1 (a + I>-‘&* /(A, + @]“(a+‘), x* = 1 +&y, + h’) 

A = A,&A(a+ I)Q,” 

The function ho and the constant Ai are determined by the solution of problem (2.17), (2.18) and Ho 
(when the constant A is known), and x1, yi are determined using formula (2.12) and (2.19). 

Numerical solution for the transition zone problem. System (2.17)-(2.19) was solved numerically for 
ice with constant viscosity. In this case, the domain of definition, an infinite strip with an unknown lower 
boundary, was truncated far from the joining line (cl c 5 < 5,) and was then reduced to a rectangle by 
the change of variables 6 = (y - 1 + h&ho. In these new variables, the equation for the ice thickness 
(2.18) when the stream function is known, will be a third-order equation. The additional boundary 
conditions 

hog(O) = ho&9 = 0, h&J = h, 

the last of which, as the calculations showed, only has a weak effect on the solution, were used to 
solve it. 

The conditions along the joining line which have been presented were obtained from the following 
reasoning. If ho = 1, then the asymptotic solution of the problem for stream function (2.17) when 
(5, y) + (0,O) can be found [ 161. If this solution is substituted into the equation for the lower surface 
of the ice, that has been reduced to a form which only includes the values of the stream function and 
its derivatives in the lowest surface [9], then the function ho = 1 satisfies this equation. This enables us 
to assume that the function of the lower surface is continuous along the joining line. 

We obtain 

PO= 1.5, yI =0.67, h=0.32, A, = 1.86 

from the results of the calculations. 
The calculated outer surfaces of the ice (line a) close to the joining line are shown in Fig. 2. The 

solutions for the land-based part of the glacier and the shelf, found in the thin-layer approximation, 
are shown by curves c. The sea level is shown by line b. It can be seen that the thin-layer approximation 
is accurate outside the neighbourhood of the joining line in some thicknesses. The existence of a local 
minimum of the function for the upper surface of the glacier close to the joining line is characteristic. 
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Fig. 2 

Results of calculations of the dimensionless vertical velocity (w = -vog) and the horizontal 
velocity (U 
(tz = 

= wO,), as well as the shear stress (tl = vloly - wo5rJ and the normal deviator stress 
2wqY) are shown in Figs 3 and 4. Each curve corresponds to the distribution of the function over 

a cross-section and the number on a curve represents the distance of this cross-section from the joining 
line 5 in the thicknesses of the ice on it. For clarity, a vertical coordinate c = (y - 1 + ho)/ho is used in 
which the lower and the upper surfaces are defined as < = 0 and < = 1 respectively. For example, the 
label -l/2 on the left-hand side of Fig. 3 shows a graph of the distribution of the vertical velocity through 
the thickness of the ice at a distance from the joining line towards the land-based glacier equal to l/2 
of the ice thickness along the joining line. At a distance of one thickness of the ice (the label is -l), the 
flow is close to Poiseuille flow, the vertical velocity is close to zero and the horizontal velocity has an 
exponential profile (the right-hand side of Fig. 3). At a distance of two thicknesses of the ice towards 
the shelf (label 2), the flow is close to expansion flow (piston flow) when the horizontal velocity is constant 
throughout the depth (the right-hand side of Fig. 3) which, as a consequence of the mass balance, leads 
to a linear profile of the vertical velocity. Since the inflow of mass through the surface is neglected in 
the transition zone, the surface of the ice is a material surface and as a consequence of this, the vertical 
velocity is equal to zero on the upper (horizontal) surface and depends on the horizontal velocity and 
the slope of the given surface in the lower (inclined) surface. It is clear that the nature of the flow changes 
sharply in a domain, the length of which is equal to three thicknesses of the ice. Outside this domain, 
the thin-layer approximation is acceptable. 

Conclusion. The analysis carried out in Section 2 enabled us to find a rigorous boundary condition 
on the joining line (2.20). The parameter p is determined solely by the solution of the inner problem, 
although it can also be found from natural measurements in the case of natural glaciers. 

0 0.5 1.0 u 2.0 

Fig. 3 
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Fig. 4 

Numerical solution of the problem for the transition zone determined the existence of a local minimum 
in the profile of the upper surface of the glacier close to the joining line which can be used to observe 
it in the case of field investigations of glaciers which are interacting with an ocean. 

If follows from the above analysis that, along the joining line, the ice is close to a state of hydrostatic 
equilibrium (in the general case, the error is estimated as O(6) = 10%). In the case of a constant viscosity 
of the ice, numerical calculations showed that the ice thickness corresponding to the inner solution for 
the transition domain and the outer solution for the land-based glacier along the joining line differs 
from the ice thickness when the ice is at hydrostatic equilibrium by -33.% and 0.1% respectively. The 
condition of hydrostatic equilibrium of ice in water can therefore be used as a boundary condition for 
the land-based part of a glacier the along joining line. 

The complex approach to the study of a whole glaciological system (the land-based part, the shelf 
and the transition zone) enables one to establish a link between the characteristic scales of its parts in 
terms of the parameters E and 6, which characterize the external conditions of existence of the glacier 
and, also, to construct a well-founded simplified closed model which describes its dynamics and takes 
dccount of the special features of all of its zones. 

3. ANALYSIS OF THE DYNAMICS OF THE ICE-DIVIDE 
DOMAIN IN THE CASE OF AXISYMMETRIC 

ICE FLOW 

Next, we will consider an unsteady, axisymmetric flow of ice where, when analysing a particular zone 
of the ice divide, it is sufficient to consider the dynamics of just the land-based glacier (in this case, a 
glacier which is completely located on a land can be considered). Knowledge of the position of the end 
of the glacierXg and the height of the surface on it A (where A = 0 for a land-based glacier) is sufficient 
in order to formulate the problem for the leading terms of the expansion in closed form since Eq. (3.5) 
(see below) for determining the leading term of the outer expansion of the function for the profile of 
the upper ice surface is a first-order integrodifferential equation in a spatial variable. 

After changing to dimensionless variables, problem (l.l)-(1.5) as in the modelling of plane 
flow, can be reduced to the problem of determining the stream function Y(U = Yz/R, W = -YR/R) 
and the unknown ice surface S when n = 1 (new variables are denoted by capital letters, where 
R = x/[x]). 

7;,z = E2KV(R7; )R)R + 7iR.z +V7&-V(RT2Z)R], O<R<R,, B<Z<S (3.1) 

Z=S: E~S,(T~-~)=(I-E~S;)~;, Y=; R(F,-S,)dR 
0 

(3.2) 

Z=B: ‘f’=Yz=O; R=O: Yz=(VY,),=O; S(R,)=A (3.3) 

where 
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E, = vyl, -&*(VYI,&, E, = (wz)R, E3 = -VY,, Ed = V2Yz, V = 11 R 

~=~E:+~E*(E~+E~+E~)I(‘-~)‘*~’ (7;,T2,T,,T,)=p(E,.2E2,2E,,2E,) 

The equation for the profile of the upper ice surface has the form 

(3.4) 

where 

H2 
=-y+c2; (--I+T,)dZ 

E 

Equation (3.4) was obtained by integrating the first equation of (2.1) with respect to z from b to s and 
is the equation for the balance of the forces in a vertical cross-section x = const. 

Model of a land-based glacier. We will seek the outer expansions F, s for the stream function YJ and 
the function for the height of the surface S far from the ice divide in the form 

J=&+o(&*), J=(Y,S) 

Then, from relations (3.1)-(3.4) we find, in a similar manner to that described previously in [17]. 

1 (3.5) 

where 

jqo =so -B, Q= v; R(F, -~oeMR 
0 

The equation for the profile of the upper ice surface (the second equation of (3.5)) is a first-order integro- 
differential equationLIt can be reduced to a differential equation of parabolic type with the additional 
boundary condition S&O, 0) = 0. It can be solved numerically since it is difficult to find an analytical 
solution in the case of an arbitrary form of the functions B and F,. If the bed is plane and horizontal and, 
also, the rate of accumulation is constant, a steady solution can be found analytically [17]. 

Close to the ice divide (R + 0), we obtain 

To =RR(a+I)-’ (a+2)5--I+ 
(So - Z)a+2 

SO 
-a+2 
so I 

+ O(R’+“a) 

R=O 

(3.6) 

I - 
n=-_(F,-&),=, 

2 

The second equation of (3.5) serves to determine the profile of the glacier surface far from the ice 
divide. It follows from formula (3.1) that an outer expansion which makes use of the smallness of the 
ratio of the normal deviator stress to the shear stress is unsuitable when R = O(E) since, in this case, 
Fzz = O(E~) and the shear and normal stresses are of the same order of magnitude. Hence, in the ice- 
divide domain, it is necessary to find an internal expansion. In spite of the fact that the second equation 
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of (3.5) is unsuitable close to the ice divide, this solution is necessary in order to find the ice thickness 
on it, which is determined solely using the matching procedure. It is clear that, as a consequence of 
neglecting the rate of tensile deformations compared with the rate of shear deformations in Eq. (3.1), 
the magnitudes of the stresses (and, consequently, of the velocities also) obtained using an outer 
expansion in the ice-divide domain differ from the true values by an amount which is comparable with 
the stresses (velocities) themselves. Moreover, as can be seen from the second equation of (3.6), the 
outer expansion of the function for the profile of the upper ice surface possesses an infinite curvature 
when R = 0. 

Model of the ice-divide dynamics. The unknown thickness of the ice on the axis of symmetry of the 
glacier in the variables (R, Z), which will be determined from the matching, is denoted by Ad = S(0). 
We will now introduce the inner expansion variables in the ice-divide domain. 

In the new variables, the equations for determining the stream function look similar to (3.1)-(3.3) if 
the symbols (E, R, 2, S, B, ‘I”, Tk) are replaced by (1, 5, y, x, 6, w, fk) in these equations, where 

where the second equation follows from the smoothness and symmetry of the function for the bed profile 
when R = 0: BR(0) = 0. Here, the equation of the profile of the upper surface (for the balance of forces 
in the cross-section) takes the form 

-(x2 / 2)5 = E ‘+“Y& v(p~YY)Y=6 +u i (t, -t2)dy- I,] + 0(E2), x(O) = I l9 
where 

We will seek the inner expansion in the form 

For the terms of the expansion, we have the system 

t,yy+U(5t2y)5-(U(5t,)5)5-ij5y=Ut4y, 0<5<+9 O<Y<l 

y=l: e,=O, wo=e; y=O: yfo=yfoy=O 

5=0: woy =w4fo& =o 

(3.7) 

The terms of the expansion for the height of the surface are determined using the explicit formulae 

where 

ei =~WO~~-@W~~)~~ e2 =@woy)5, e3=+yfogy, e4 =u2\yoy, v =1/k 

P=[ef +2(e,2 +e,2 +ei)1(‘-a)‘(2a), (f~.f2,f3,t4)=~(e,,2e2,2e3,2e4) 
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The resulting system of equations describes the flow of the glacier in the ice-divide domain. Note 
that the first term in the expansion for the height of the upper surface is completely determined by 
the zeroth term of the expansion for the stream function. It is easily verified that, in the case of a 
Newtonian fluid (a .= l), the outer expansion (the thin-layer approximation) (3.6) for the stream function 
satisfies the inner problem (3.7) with an accuracy O(E’). 

Problem (3.7) for the normalized stream function w. does not include parameters which depend on 
time, unlike the first formula of (3.6) for the stream function To. 

The slope of the upper surface of the glacier can be neglected with an error O(E*+“~) since the domain 
of definition of problem (3.7) is an infinite layer of unit thickness with horizontal, plane boundaries. 
However, the uniformly valid expansionfor the upper surface, found with an accuracy of O(E*+“~) (that 
is, after matching the,functions x0 and So), will have an infinite curvature when 5 = 0 and, therefore, 
when matching, it makes sense to take account of the next term in the expansion for x, that is, x1. The 
quantity & is determined by the condition for matching the inner expansion with the outer expansion. 

On taking account of relation (3.6) and the fact that 

after matching, we obtain the uniformly valid solution for the profile of the glacier surface (in inner 
variables) 

where 

Ad = ifo(o)(l - &‘+‘la A)? a, =So(O)-‘-“Q(F,/2-S,,/2)~~a, 

X* 
= 1 +El+lla Ro[C-a(a+2)“a(a+1)-‘~‘+“a] 

c = -TV i bwoyy 
0 

-(W,)“=l,,o+w)dS-515=o, h=Q)C, o=i 04--C2MY 

0 

If follows from this solution and the second formula of (3.6) that the graph of the function &JA - x’ 
has a finite curvature on the axis of symmetry of the glacier. On the other hand, smooth functions occur 
in the expression for x1 (it is assumed that the stream function, a solution of system (3.7) has continuous 
fourth-order derivatives). The solution which has been constructed is therefore characterized by a finite 
curvature of the upper surface on the axis of symmetry of the glacier. 

Conclusion. The investigations carried out in Section 3 have shown that, in the case of axisymmetric 
ice flow in the ice-divide domain, all the unknown characteristics can be calculated in an infinite layer 
with plane horizontal boundaries, the thickness of which is identical, to a sufficient degree of accuracy, 
with that found using the thin-layer (shear flow) simplification. 

The problem, describing the dynamics of the ice-divide domain, can be reduced, by a change of 
variables, to a form which does not include parameters which depend on time, the length of the glacier, 
the rate of accumulation of ice on the surface, the rheological parameter and the ice thickness, and it 
can be solved separately from the problem for the glacier as a whole. 

The solution of the steady problem for the ice-divide domain enables one to determine its unsteady 
fields by an extension of the coordinate axes and renormalization of the stream function. 

The curvature of the upper surface of the glacier is finite along its axis of symmetry. 
The thin-layer simplification cannot be used to calculate the velocities and stresses in the ice-divide 

domain. 
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